Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Geochem Health ; 46(3): 84, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38367079

RESUMEN

Heavy metals can play an important biological role as micronutrients but also as potentially toxic elements (PTEs). Understanding the natural concentrations of PTEs-Pb and Zn included-in soils allows for the identification and monitoring of contaminated areas and their role in environmental risk assessment. In this study, we aim to determine semi-total or natural and available concentrations of Pb and Zn in topsoils (0-20 cm depth) from 337 samples under native vegetation in the State of Minas Gerais, Brazil. Additionally, we sought to interpret the spatial geochemical variability using geostatistical techniques and quality reference values for these elements in soils were established. The semi-total concentrations were determined by flame and graphite furnace atomic absorption after microwave-assisted nitric acid digestion method. The available concentrations were extracted using the Mehlich-I extractor and determined by atomic absorption spectrometer. Spatial variability was modeled using semivariance estimators: Matheron's classic, Cressie and Hawkins' robust, and Cressie median estimators, the last two being less sensitive to extreme values. This allowed the construction of digital maps through kriging of semi-total Pb and Zn contents using the median estimator, as well as other soil properties by the robust estimator. The dominance of acidic pH and low CEC values reflects highly weathered low-fertility soils. Semi-total Pb contents ranged from 2.1 to 278 mg kg-1 (median: 9.35 mg kg-1) whereas semi-total Zn contents ranged from 2.7 to 495 mg kg-1 (median: 7.7 mg kg-1). The available Pb contents ranged from 0.1 to 6.92 mg kg-1 (median: 0.54 mg kg-1) whereas available Zn contents ranged from 0.1 to 78.2 mg kg-1 (median: 0.32 mg kg-1). The highest Pb and Zn concentrations were observed near Januária, in the northern part of the territory, probably on limestone rocks from the Bambuí group. Finally, the QRVs for Pb and Zn in natural soils were lower than their background values from other Brazilian region and below the prevention values suggested by Brazilian environmental regulations.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo/química , Brasil , Plomo , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Zinc
2.
Environ Res ; 215(Pt 1): 114147, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36063907

RESUMEN

Mercury (Hg) toxicity in soils depends on Hg species and other physical and chemical attributes, as selenium (Se) hotspots in soils, particularly relevant in Amazonian soils. The study of Hg species and their relations in representative locations of the Amazon rainforest biome is critical for assessing the potential risks of Hg in this environment. This work aimed to determine the concentration of total Hg and its species (Hg0, Hg22+ and Hg2+), and to correlate Hgtotal concentration with total elemental composition, magnetic susceptibility, and physicochemical attributes of Amazon soils. Nine sites in the Amazon rainforest biome, Brazil, were selected and analyzed for their chemical, physical, and mineralogical attributes. The clay fraction of the studied Amazon soils is dominated by kaolinite, goethite, hematite, gibbsite, and quartz. Mica was also found in soils from the States of Acre and Amazonas. Hgtotal ranged from 21.5 to 208 µg kg-1 (median = 104 µg kg-1), and the concentrations did not exceed the threshold value established for Brazilian soils (500 µg kg-1). The Hg2+ was notably the predominant species. Its occurrence and concentration were correlated with the landscape position and soil attributes. Hgtotal was moderately and positively correlated with TiO2, clay, and Se. The findings showed that geographic location, geological formation, and pedological differences influence the heterogeneity and distribution of Hgtotal in the studied soil classes. Thus, a detailed characterization and knowledgment of the soil classes is very important to clarify the complex behavior of this metal in the Amazon rainforest biome.


Asunto(s)
Mercurio , Selenio , Contaminantes del Suelo , Brasil , Arcilla , Ecosistema , Monitoreo del Ambiente , Caolín , Mercurio/análisis , Cuarzo , Bosque Lluvioso , Selenio/análisis , Suelo/química , Contaminantes del Suelo/análisis
3.
Environ Sci Pollut Res Int ; 28(35): 48427-48437, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33909251

RESUMEN

Potentially toxic elements (PTEs) are of great concern in steel mill wastes. Therefore, in order to use them as potential fertilizers in soil, risk assessments are needed. Three steel mill wastes were tested as possible amendments for soils at seven different doses (0, 0.5, 1, 2, 4, 8, 16 t ha-1): phosphate mud (PM), metallurgical press residue (MPR), and filter press mud (FPM) during rice cultivation in a pot experiment in a Haplic Gleisol. Analysis on rice tissues, including roots, shoots, husk, and grains, were conducted and contents of Cu, Cd, Ni, Zn, Mn, and Pb were assessed. Translocation and bioaccumulation factors were calculated for each element. In general, PTEs are more accumulated in roots and greater contents of Zn and Mn were found, while the lowest ones were found for Pb, probably due to its lack of functional roles during plants development. Higher translocation was observed for Mn, which is associated to the redox conditions of rice cultivation and the high mobility of this element under this condition. Application of steel mill wastes can increase PTE bioavailability and translocation factors, especially PM, but all of the wastes reveal a high hazard index.


Asunto(s)
Metales Pesados , Oryza , Contaminantes del Suelo , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis , Acero
4.
Chemosphere ; 254: 126904, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32957297

RESUMEN

Estimating bioaccessible content of mercury in soils is essential in evaluating risks that contaminated soils pose. In this study, soil samples spiked with HgCl2 through adsorption were used to test the effects of liming, soil organic matter, soil depth, and Hg concentration on the following bioaccessibility tests: dilute nitric acid at room temperature, dilute nitric acid at body temperature, Simplified Bioaccessibility Extraction Test (SBET) method, and gastric phase of the In vitro Gastrointestinal (IVG) protocol. Soil and sediment samples from Descoberto, Minas Gerais (Brazil), a city with a well-known record of Hg contamination from artisanal mining, were subjected to these bioaccessibility tests for the first time, and the different methods of estimating bioaccessible content were compared. Bioaccessible fractions in spiked samples ranged from 10% to 60%, and this high bioaccessibility was due to the highly soluble species of Hg and the short time under adsorption. In general, clay and organic matter decreased bioaccessible content. Although the soil in Descoberto is undoubtedly polluted, mercury bioaccessibility in that area is low. In general, dilute nitric acid estimated higher bioaccessible content in soil samples, whereas the SBET method estimated higher bioaccessible content in sediment samples. In multivariate analysis, two groups of bioaccessibility tests arise: one with the two nitric acid tests, and the other with SBET and the gastric phase of the IVG protocol. The addition of pepsin and glycine in the last two tests suggests a more reliable test for assessing mercury bioaccessibility.


Asunto(s)
Arcilla/química , Sustancias Húmicas/análisis , Mercurio/análisis , Minería , Contaminantes del Suelo/análisis , Suelo/química , Adsorción , Disponibilidad Biológica , Brasil , Ciudades , Mucosa Gástrica/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mercurio/metabolismo , Modelos Biológicos , Ácido Nítrico/química , Contaminantes del Suelo/metabolismo
5.
Chemosphere ; 257: 127114, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32480084

RESUMEN

Problems related to specificity and re-precipitation of metals in sequential chemical extractions can impair their routine use. In order to test the efficiency of a sequential chemical procedure, model compounds composed by soil components commonly found in tropical soils such as goethite, Al-goethite, ferrihydrite, hematite, bauxite, and humic acid were incubated with either Hg(NO3)2 or HgSO4 and submitted to chemical extraction. The procedure aims to assess: (i) water soluble Hg; (ii) bioaccessible Hg at pH near human stomach; (iii) Hg associated with organic matter; (iv) reduced Hg; (v) Hg associated with Fe, Al, and Mn oxides; and, (vi) residual Hg. This procedure was also tested via single and sequential extractions using the surface and subsurface samples of two tropical soils, i.e., a Rhodic Acrudox and a Typic Hapludox, with and without lime application. Soil samples were submitted to an adsorption experiment with HgCl2 and a high adsorption percentage was observed. The majority of Hg at both single and sequential procedure was extracted by an acetic acid solution (pH = 2). Liming, soil depth, and soil type were not determinative on Hg extractability. The sequential extraction applied showed a lack specificity of Hg fractions, confirmed by the model components.


Asunto(s)
Mercurio/análisis , Contaminantes del Suelo/análisis , Adsorción , Compuestos de Calcio , Fraccionamiento Químico , Humanos , Óxidos , Suelo/química , Agua
6.
Ecotoxicology ; 29(3): 305-313, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32076927

RESUMEN

Lead (Pb) in soils can be transferred to plants, animals, and even humans. The toxicity of Pb is worrisome and therefore environmental quality criteria, established by laws to support the management of contaminated sites, have been developed to prevent its deleterious effects in a wide range of soils, uses, and occupations. In Brazil, the CONAMA Resolution 420/2009 established that Brazilian states may define their prevention values (PV) for metals in soils. However, the established values should be well studied, since a wide variation of sensitivity of species exposed to Pb is reported and several have a high tolerance. We aimed to evaluate Pb toxicity to validate the suitability of the current Brazilian Pb-prevention value. A trial was carried with two plant species (sorghum and soybean) grown in two tropical soils (Typic Hapludox and Rhodic Acrudox), following ISO 11.269-2 protocols (ISO 2012). The tested soils were contaminated with Pb-acetate at the following concentrations: 0, 200, 400, 800, 1200, 1600, 2200, 2800, and 3200 mg kg-1 of dry soil. Differences regarding species sensitivity were observed and sorghum seemed to be less sensitive to Pb concentration in soils. Soil characteristics as higher clay and organic matter content were responsible for decreasing the overall availability of Pb for plants. Using data from this study and from the literature, we constructed a species sensitivity distribution curve and calculated the HC5 (hazardous concentration to 5% of variables evaluated). The HC5 was 132.5 mg kg-1, which suggests that the PV currently used in Brazil (72 mg kg-1) is sufficiently protective for Brazilian soils.


Asunto(s)
Biodegradación Ambiental , Plomo/toxicidad , Plantas/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Brasil , Fabaceae/fisiología , Humanos , Suelo
7.
Environ Sci Pollut Res Int ; 26(1): 483-491, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30406589

RESUMEN

Mercury is a metal which is potentially toxic for the environment. Many factors control its retention in the soil, such as cation exchange capacity, pH, clay content, organic matter, and redox potential. It is important to know the phytotoxic effects of soil Hg to prevent environmental contamination and its entry into the food chain. Several analytical methods are used to measure metal phytoavailability in soils, but none has been reported for Hg in Oxisols, the most common soil class in Brazil and a very important soil class throughout the tropics. The aim of this study was to select the chemical extractor that best correlated the Hg levels in plants and the Oxisols. The soils used were classified as Dystrophic Red-Yellow Oxisol (LVAd) and Dystroferric Red Oxisol (LVdf), which were collected in the 0-0.2-m soil layer. The species selected for cultivation were a monocotyledon, oat (Avena sativa L. cv. São Carlos) and a eudicotyledon, common bean (Phaseolus vulgaris L. cv. Madrepérola). Each test plot was composed of a 500 cm3 pot filled with soil samples contaminated with HgCl2. Treatments were arranged in a completely randomized design, with four replications. The experiment was conducted for 30 days. Mercury contents were separately extracted with the following extractors: USEPA 3051A, Mehlich-1, Mehlich-3, DTPA, and water. Mercury was determined by hydride generation atomic absorption spectroscopy. The extracted contents were correlated with the contents in the tissues of the plants' aerial part by the Pearson correlation. Although it is not considered a standard procedure to evaluate metal phytoavailable contents, the method that presented the best correlations between soil Hg and plant Hg was USEPA 3051A (r = 0.75*). As expected, the worst correlation was with water (r = 0.57* for common bean and r = 0,05ns for oat).


Asunto(s)
Monitoreo del Ambiente , Mercurio/análisis , Contaminantes del Suelo/análisis , Suelo/química , Brasil , Metales , Espectrofotometría Atómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...